~ THE COMPUTER JOURNAL

For Those Who Interface, Build, and Apply Micros

Vo o Mo & Issue Mumber 13 $2.50 US

Controlling the
Apple Disk][Stepper Motor .-

Interfacing Tips and Troubles:
Interfacing the Sinclair Computers, Part One pas

RPM vs ZCPR:

A Comparison of Two CP/M Enhancements page 10
AC Circuit Analysis on a Micro s

BASE:

Part One in a Series on
How to Design and Write Your Own Databasea s

Understanding System Design:
CPU, Memory, and /O s

N N YN

Editor’s Page

Turmoil In The
Computer Publishing Market

There has been a lot of conjecture about a drastic
shakeout in the microcomputer hardware and software
fields, and apparently the publishing field is not immune
from this danger.

Until the early 1980's the majority of the people buying
micros were technically oriented because they had to
configure and interface the computers which were then
available. At that time, a few magazines were started by
technically involved individuals to provide the information
needed by these pioneers. As micros became accepted as a
legitimate tool by the business community, people rushed to
purchase appliance type micros for the office, and the
number of micros in use increased very rapidly. The
microcomputer industry saw the fantastic quantities of
micros being sold as an almost unlimited opportunity to sell
anything related to micros to this inexperienced audience.
While the hardware and software people rushed poorly
conceived and untested products to market, the publishers
forgot the basic fundamentals of market analysis and
envisioned expanding their magazine circulation to a million
subscribers, and publishing books with sales in the millions.

The point that the publishers failed to recognize was that
the people in this vast new market were buying appliance
type computers with the intention of plugging them in and
using them for business applications. These people are not
interested in how a computer works, they are just buying a
tool to use. As a comparison, consider the television. Almost
everybody has a TV set, but most people do not buy books
or magazines on how the TV works, or how to build their
own antenna, or how to repair the set, or even how to
adjust the set. A few technically oriented people are
interested in these topics, but most people are satisfied with
a TV program listing which they usually get in their
newspaper. They expect to just plug it in and have it work
without having to go back to school in order to learn how to
use it! The majority of the people buying micros today feel
the same way about their computer. They expect to plug it
in and use it without having to refer to a book—and this
trend will become even more pronounced as the industry
develops the user friendly systems which these people insist
on.

The sales of technical publications did not increase at the
same rate as the increase of microcomputer sales, so many
of the publishers expanded into general, non-technical
subjects in order to penetrate this vast new market.
Unfortunately, this expansion required additional capital to
finance the expansion, and many of the previously

individually owned or closely held businesses went to the

venture capital market for the cash needed to expand. The
people who gained control of the businesses were not
technically oriented, but they could read the bottom line of
the quarterly report and could calculate their potential
financial gain from taking the business public and selling
stock. However, rapid financial gain requires rapid growth,
and they went for the big market by making their
publications so general that they would appeal to everyone.
When the management of the magazines changed from
the technically oriented originators to bottom-line-oriented
businessmen who were unfamiliar with the market, they
also made another very significant change. In order to
maximize the short term profits, they changed the nature of
the publications from a subscriber-driven magazine with a

" maximum of technical information for the reader, to an

advertiser-driven magazine with the content designed to
maximize the the amount of paid advertising.

The original market—the technically oriented
people —got tired of reading reviews and rewritten
advertising fluff, so they stopped buying. The huge general
audience never was a market for a large quantity of books
or magazines, so they never started buying. The temporary
increase in circulation resulted in significant increases in the
advertising page rate cost. The hardware and software
industry is suffering from poor business practices, including
overexpansion and mediocre “me-too products” with poor
customer support. Many hardware and software suppliers
are laying off their help or filing for bankruptey, which
means greatly reduced advertising expenditures and
advertising bills which will never be paid. The result of all
this is that a number of magazines have ceased publication
during the last few months, and there are indications that
several book publishers are in a difficult position. The next

continued on page &

Editor/Publisher. Art Carlson
Art Director......... o Joan Thompson
Technical Editor. Lance Rose
Production Assistant......................... Judie Ouverbeek
Contrmbuting Editor. Ernie Brooner

The Computer Journal® 1s published 12 times a year. Annual
subscription is $24 tn the U.S., $30 in Canada, and $48 airmail in
other countries.

Entire contents copyright ‘< 1984 by The Computer Journal

Postmaster: Send address changes to: The Computer Journal
P.O. Box 1697 Kalispell, MT 59903-1697.

Address all editorial advertising and subscription inquires to:

The Computer Journal P.O. Box 1697, Kalispell MT 59903-169".

2 The Computer Louma

Controlling the Apple Disk][Stepper Motor

by Jan Eugenides

One of the more interesting aspects of computing is the
controlling of mechanical devices. These devices can be
anything from burglar alarms to giant robot arms. In the

~Apple Disk II there is a small robot arm with one axis of
movement, which is controlled from the Apple by a set of

" soft switches. This article will show you how to directly

access and control the Disk II arm from assembly language.

The Stepper Motor

Inside the Apple disk drive, in fact inside of nearly all
disk drives, is a device called a stepper motor. Unlike the
usual electric motors we are used to, the stepper motor does
not continuously spin, but instead moves in small steps
according to the control voltages it receives. Hence, the
name stepper motor. By properly controlling such a motor,
it is possible to accurately position a mechanical arm
connected to the motor. A lever system can be used to
translate the twisting movement of the motor (horizontal
movement of the arm in the case of a disk drive) to a
straight line movement of some kind. By the proper use of
several motors along different axes, very complex ranges of
movement can be obtained and controlled by computer.
Controlling the arm of the Apple Disk II is a good place to
begin to experiment along these lines.

The Soft Switches
Most of the hard stuff is taken care of for you by the
Apple circuitry, and direct access to the disk drive can be
easily obtained from assembly language. This is
accomplished through a series of soft switches inside the
Apple itself. These switches are set up as memory locations
which, when accessed in any way, toggle according to a
preset design. See Figure 1 for a table of these addresses.
The addresses in the table are the base addresses for &
theoretical drive in slot 0. The actual addresses are slot
dependent, according to the following formula:
Actual Address = Base Address + (Slot x 161.
The usual way of handling this from assembly is to load the
x-register with the slot times 16, and use it as an offset from
the base address. For example, to turn on a drive in slot six,
LDX #$60
LDA $C089,X

Phases
Once the drive is on, the disk will begin spinning. Now the
drive is “live” and the stepper motor can be directly
controlled. In order to move the arm, it is necessary to turn
on and off the four phases of the stepper motor. This is done
by sequentially accessing the proper soft switches. When

the phases are accessed in ascending order, the arm moves
inward. When they are accessed in descending order, the
arm moves outward. Each phase actually moves the arm
one-half track. Thus it is possible to move the arm between
the normal 35 tracks on the Apple Disk II. However, it is
not possible to write between tracks, because the read/write
head is too wide, and you would wind up destroying data on
both sides. Some copy protection schemes use the half-track
positioning to make their disks difficult to copy. As long as
data is written at least one track apart, the half-track
positions can be used.

The Arm Mover Program

Listing 1 is the source code for a program which
demonstrates a method for controlling the disk arm from
assembly language. It allows the user to input a track
number in hex, and the program will move the arm to that
track. With a little modification, you could add the ability to
read any given track into memory, perhaps as raw data, and
thereby examine the formatting of the disk. As it stands,
the program is purely educational (but fun!).

The source is well-commented, and you will have no
trouble following the flow. The main control routine is in
lines 1560-1970. The rest of the program is user-interface
stuff.

How to Use the Program
To use the program, once you have typed in the machine
code from Listing 2, or assembled it from Listing 1, simply
BRUN it. The drive will come on, and you will hear the
familiar sound of the disk arm being recalibrated to track 0.
The screen will clear and you will be asked which track you
wish to move the arm to. Input a two-digit hex number

Base Address

1)
a
1
1
2
2
3
3

0
-+
-

on
Select drive 1
Select drive 2

Figure #1

between $00 and $23 (that's right. the Disk II will access 36
tracks, although DOS 3.3 does not use track $23), and the
arm will move to that track. You may wish to remove the
cover of the drive in order to more clearly see the
movement. Notice that if you input a track such as $FF, the
drive tries to move out that far, but of course it can't, so it
continually bumps up against the stop. Don't worry, this
won't hurt it a bit. After trying for track $FF, try track $00
again. The program thinks the drive was on track $FF, so it
moves all the way in and then bumps repeatedly against the
other stop. This, in fact, is the norma! way of recalibrating
the arm to track zero. In the first few lines of the program,
you will notice we used this method. putting a large number
($30) in the current drive variable, and then pulling the arm
back across $30 tracks, to be sure it starts at track 0. By the
way, hitting the RETURN key instead of inputting a track
number will exit the program and turn off the drive.

Possible Uses
Direct access of the disk drive is necessary for many
programs, such as user-written operating systems, bit
copiers, system-independent programs, etc. I am not
personally into copy protecting my disks, however a fine
knowledge of direct disk access would certainly be useful
there.

We have not gone into the actual reading or writing of
the disk in this article. That will have to wait for a future
issue. If you find this as interesting as I do, you might
consider disassembling DOS from $B9A0 to $BA28. Those
are the addresses of the DOS 3.3 arm move routines, which
use a slightly different method to calculate the phases. Any
questions you have may be directed to me, care of The
Computer Journal —T'll try to help if I can.

LISTING #1
1008 +#S.TEST.ARM. MOVERZ
1910 »
1820 GETLN .EQ $FD6A
143@ CH -EQ 324
1848 CV .EQ $25
1058 CTR .EQ %86
1068 INBUFF _EQ 3200
1876 IPTR -EQ sé8
1088 SLEN -EQ S$FF
1698 BASIC -EQ $3D@
1106 Ccouv -EQ SFDED
1116 PROMPT _(EQ 33
1126 HOME -EQ $FCS8
113@ TABV -EQ S$FBSB
1148 MON.DELAY .EQ $FCAS
1156 PRBYTE .EQ SFDDA

1160 «——-Disk 1/0
Selects
1176 STEPMOTORS .EQ sCo8€
1186 STEPMOTOR!? .EQ sCeo81
1196 STEPMOTORZ .EQ $C@82
1206 STEPMOTOR4 .EQ sCo8s
12196 STEPMOTORS .EQ $CP86
122¢ DRIVEOFF -EQ $COB8 Turn draive off after & revs
1230 DRIVEON .EQ $C989 Turn drive on

1246 DRIVE1.SELECT .EQ $CO8A Select drive 1

Step motor position

1250 DRIVE2.SELECT .EQ $C@8B
1260

127@ .TF ARM.MOVER?

1286

1299 RESET.ARM LDA #s3@
1389 STA CURRENT. TRACK
1316 LDA 0 Set destination track to zero
13260 STA DESTINATION. TRACK

13386 LDx SLOT Fut slot ¢ 16 in x-reg
1348 LDA DRIVE].SELECT,X Select drive 1
135¢ LDA DRIVEON, X Turn on drive

Put $30 1n current track

1368 JSR MOVE . ARM Recalibrate arm to track zero
1378 LDX SLOT Assure x-reg t1s correct

1386 (DA STEPMOTORE, X Turn off all phases

139¢ L DA STEPMOTOR2, X

1469 L DA STEPMOTORS, X

141© DA STEPMOTORGS, X

142 JMP START Skip data

1439

W
144¢& CURRENT. TRACK -HS @@

1456 DESTINATION. TRACK .HS @9

1462 YOFFSET -HS o¢

1478 NUMEBRER.OF . TRACKS HS 28

148¢ SLOT -HS 48

1496

1520 START JSK SCREEN Clear screen and pPrint message

1530 ISR MOVE . ARM Move arm to selected track
1548 JIMP START Do :t again

155@ #--Arm move

routine-—--——- -

156@ MOVE.ARM LDA %@

1574 STA YOFFSET Imtialize offset
1584 L DA CURRENT. TRACK Get current track
1596 SEC

1689 SBC DESTINATION. TRACK
1618 BEQ .4
1628 BCS .1
163@ EOR NS$FF

Subtract destination track
14 equal. then we're done

Continue 1f result positive
otherwise, make 1t positive

1646 ADC #1

1656 .1 STA NUMBER.OF.TRACKS Save number of tracks to move
1668 ROL YOFFSET Set offset for 1n or out movement

1678 LSRR CURRENT. TRACK Is track even or odd”

1688 ROt YOFFSET Set offset for even or odd

1699 ASL YOFFSET Adjyust vaiue for table offset

17866 DY YOFFSET Fut offset i1n y-reqg

17186 .2 LDA PHASE.TABLE,Y Get phase to turn on

1728 JSR DO.PHASE Do 1t

1736 LDA PHASE.TABLE+1,Y Two phases required for each

track,

1740 JSR DO.PHASE Do the next one

1758 TvA

1766 EOR #3682 Change offset for next phase

177é¢ TAY

1788 DEC NUMBER.OF . TRACKS Decrement number of tracks to
move

1798 LDA NUMBER.OF . TRACKS

BNE .2 Not done, do another

1818 LDA DESTINATION. TRACKY Update current track
18286 S5TA CURRENT. TRACk

1836 .4 RTS All done

1848 #——-Turn on a phase, delay 28 ms, then turn 1t off
again——-—

1858 DO.PHASE ORA SLOT Add slot to phase

1868 TAX Put 1t 1n x-reg

1879 LDA STEPMOTOR1.X Turn on a phase

18868 JSR WAIT Delay 1s necessary while arm soves

1898 L DA STEPMOTOR®,X Turn off a phase

1968 RIS

1910 #--2¢-ms delay

FOUt e~ o
1920 WAIT LDA #8546

1938 JSR MON.DELAY Use montior’s delay routine
1948 RTS

1956 *--Phase

table-—-———r-mom e

1968 PHASE.TABLE .HS ©82.04.86.80 Move arm 1nward

1976 -HS 86.94.02.08 Move arm outward
1980 #——
1996 #*GET INPUT

2000 » —— -—

2010 SCREEN JSR HOME

2826 LDA @5

2838 JSR TABV Vtab S

2948 JSR PRINT Frint eaessage

2058 .AS -"TRACK TO MOVE ARM TO™

2068 .HS 90

28078 JSR INPUT Get response

2086 LDA SLEN Length of string

2096 CMP 82 1 longer than 2, 1t’s wrong
2196 BNE ERROR Print error sessage

2110 JSK CONVERT.TO.HEX Convert to hex data
2128 «

2138 KIS

2140 =

2158 #-—CONVERT TO HEX AND STORE----—
2168 CONVERT.TO.HEX

2176 LDX #1

2186 LDA IPBUF, X Get the first ascii byte
2199 JSR ASCII.TO.HEX Convert it toc hex
2200 STA DESTINATION. TRACK Store 1t

2219 DEX Get the other ascii byte

222¢ LDA IPBUF,X

2236 JSK ASCI1.TO.HEX
2240 ASL
2258 ASL

Convert to hex
Shi4t 1t to proper nibble

NG #2 D
LISTI A9 oa 8@
28 48 8A C
D 2 A5 BD]
ma 7 39 8 2C ad ¥8 AE gD
Tre Computer Jou bble GRBG = 2 8 p‘g g 38 a7 ca Py
£ ebace mtn Ge1o: BD 89 ca Ci co ac 2 o8)
. TRACK :‘:l"‘l res @81@: A8 ED 86 C' 28 97 a
ASL 10N K %] BD N 7] @
2270 IS “818: 84 Co ge B 6D 48 A9 ED
e on Srinarion et i 20 3 G 2 38
2280 frg o AT ng 2> gy o e 4C g8 3 FF
@ — o.e : =
2300 T so we're do. “B828: 29 36 ge AD 23 94 49 28
;;‘éﬂ gggél",Bﬂ Must be G_q‘; adjust Q_,a:!’ - BD 2A FG 3 BB ZE 2A ")A
- Wi 5 -F. s - 7 <
a0 o e no oo o 8 28 a8 2¢)
2150 c %7 e int e o 4¢4: a1 28 2 F o8
360 SB’X! A Poant e @8 T 69 a8 2 9 8 B 28
238 - Cemnon - o ¢#848: E 28 e ey AD
>:8@ aooER ISR ot a b1t) A9S@E: 4 AC 2 9¢ @8 oF @38 D
e SteR. St DIGITS - 9 S8: o8 8 BY CE 2 g8 8
2’“03 JmP ,SR PRINT BE 2 HEX CESSARY Q’B\JB_ 7B @ #2 A8 D 29 BD
Saa en "a0 CKS MUST OES IF NE 864 : 8 49 o2 E8B A 48 AA @
2439 ‘P; —"TRA ING ZER 8: 9 8 D¢ 2 848 C
Sase = enren Leap . @8\"—"@_ <H @8 64 @D @8 ED 68 a2
2458 :AS ooms " 879 - 7] 89 C
e 80ee ——— a b A 20 F 2 -
2470 ks S\ w878z 81 Co 6 20 A8 gz oa 2@
290 N LOx v #88¢: @ A% S 96 94 SB FB o
§5ﬁg DfLALD“N‘;EL“Y @888 3; #E g‘g a5 2 X CBE 225
ET O - A 1 C3
BE. @ C 2C cS
5239 gﬁ; e ?898: S8 Fc? D4 CF Dé a8 2
2543 o — prompt @489 74 & AY CD 4 CF 2
g:zg 0;;;;'(_____ ;;__» tion mark 1n H8AG: D4 Ci CD Ag ([:)9 a2 gg 95
2578 : ______ DA #s t ques buffer AEA8 2 F
" L Pu re in 8 . 1 S F (7Y N A
e @mﬁwqhwbwﬁn
210 Lon Pai but Caco. oo 2 21 @8 21 o8 20 o6
2621 LDA TR+1 e of 1n Coh: < 2% - D 2 ~
2638 sTA IP ¢ a “nth ne “8 = e 2 ag 2 8 8 a2
o208 S e G“'Ve leng ot ’: 8: 95 29 ¢ ?9 - -
2l von ey AT aoD@: ED e Bo o oo o8 20 -
2622 ?xﬂ EXIT If < ¢ end of llnekmlng SBDB: ::g - Eq - F4 34 G‘? gD
26 (=} ero a safe - - @ 2
2?:: sEAV P Y Put z ffer for saf a8Ed: E9 &7 2D @8 24 D3 Ag 2 -
2 A P e to bu AGEQ: c 2 3 CH Ad B2
2;12: ST“LI;A 1NBU$ Move U8E A9 4’_’ Cti C3 2 CsS 9 C7
2 .2 PTR), E’: P -~ C
27a0 sta (1 @8Fo: D4 4 Ad Ca D4
s e . BBF8: DS D3 85 D8 g§ cs ce co
3776 e o3 T off driv 709 4 €8 3 8D 1 C
a LO urn asic R 2’ - “.” A = C 5
e ors mixg‘aéclrt_f?f “““ oo o Da po cC oS ol et 3
%?g \l]':g_?‘_\.s_f;;; __________ w1 Q): €S D2 AY DA gg CE g‘[; %1%
" R
::5820 «PRINT ROU dress @91?: CE C7 Cy Co 2 D9 8 FC
z830 + - Get ad @922’: D3 Ag I C1t F; 2 AS 33
Zeos raint_ . p o A9 BF 8 @9
2860 STA C to pran 36: C 2 14 ¢ A9 85
= ere aucs avsa: o b Fa oa A9 09 FF @A
2896 va ;;Bl‘CTR;;:O—, T:::a:t" fter data @9-\ : CA 85 Q’ FD 86 Z 62
zzg I;EchguT Print ¢ instruction a @943: A9 22 28 6A 0y 99 gg FF
292 JSR next a94 2 ¢ A9 88 [=]
oy o urn to S9d: A 1 A8 1 88 BD 8
2940 “ct.ll: Ret 99:8 T Fa é‘@ a2 qE 2C o8 o8& 68
2 .3 - - _ <~
2970 "Tva cTR qu’z: B9 F& 66 A—< 68 85 Fo a6
2vee aoc e aocs: Do e D0 s o0 o 18 98
000 LDA C o0 #7682 co @ @ Fé 0]
pep Rl a: 7 A Do 69
oz o ?’9;7,8: 85 gn FD C? AS 87 29 89
3838 IL’NA g9 29 85 J 6O OO
30‘: RTS -BS 3 @986: 63 a6 as 48 g DA n
3058 I et B3988: 48 AS 8 o3 6
3070 . #990: B3 08 6
@998:

— SINGLE KEYSTROKE FOR — SHOWS SPEED AND SPEED
ALL ALIGNMENT TRACKS AVERAGE!
— JOG KEYS-MOVE TO ANY — HYSTERESIS CHECK BUILT IN
| TRACK — SELECT 5" 48, 96, 100 TPI, OR
— INCLUDES “OSBORNE" 8" 48, TPI
TYPE POWER HOOKUP — POWER "Y' CABLE-$10
— RUNS ANY STANDARD 34 DRIVE DATA CABLE-$20

FLOPPY DRIVE
EXERCISER!

T, -

-le

((((((((

ALIGN DRIVE IN 10 MINUTES!
Use with scope and alignment disk (SS $49, DS $75)

PIN (5") OR 50 PIN (8") DRIVE
USED BY: IBM, ARMY, NAVY, RCA, ETC..

EX 2000 $299

FREE Air Freight on Prepaid Orders. COD: Add $5 Plus Shipping

PROTO PC inc. CALL NOW! 415.644-4660
2439 Franklin St. Paul, MN 55114

-

6 Treloroiier e

Interfacing Tips and Troubles
A Column by Neil Bungard

Interfacing the Sinclair Computers
Part One

Bryan Lepkowski of Mechanicville, New York wrote in
and wanted to know what changes would be required to
adapt the VIC-20 EPROM programmer (The Computer
Journal Vol.Il, No.4) to operate with the Sinclair TS2068
color computer. As I attempted to answer his question, I
realized two things. One, the question cannot be answered in
a single statement and two, a large number of the Sinclair
machines (which include the TS81000, TS1500, Spectrum, and
the TS2068) have been sold to people like yourselves who
would like to use them in an interface application. These two
realizations have prompted me to address the subject of
Sinclair computer interfacing in the next two installments of
“Interfacing Tips and Troubles.” This month we will look at
the hardware and list the idiosyncrasies involved in
interfacing the Sinclair computers. Next month we wil
explore the software becessary to complete the interface.

Every computer manufacturer's design creates
“uniquenesses” in the way their particular machine
operates. On the “user” level the uniquenesses remain
transparent because of industry standards like the RS-232-C
serial standard, Centronics parallel standard, IBM disk
format, CP/M disk operating system, etc. But on the
“hacker/designer” level the uniquenesses become painfully
obvious.

The Sinclair designs are abundant with uniquenesses, and
until they are all identified, interfacing them can be a real
headache. Fortunately, I have paid my Sinclair interfacing
initiation fees (about 100 hours of hair pulling investigation),
and I have successfully connected the Sinclair machines to

. several circuits. In this two-part article I will explain the

idiosyncrasies involved in interfacing the Sinclair machines
and demonstrate general interfacing practices using the
Sinclair computers. As far as interfacing the Sinclair family
is concerned, we will assume that there are no hardware
differences between the TS1000, TS1500, SPECTRUM, and
TS2088. For the software, however, we will split the
machines into two categories. The SPECTRUM and the
TS2068 are color computers and constitute the first
category. The TS1000 and the TS1500 are black and white
models which constitute the second category. The actuai
software differences between these two categories of
Sinclair computers will be discussed later.

Listing The
Sinclair Computers’ Uniquenesses

To begin with, dats can be moved into or out of a

computer via two methods; memory mapped input/output
(MM1/0) and accumulator input/output (AI/0). The type of
input/output Supported by a computer depends primarily
upon the type of central processing unit (CPU) that it uses.
In general, the 6800 & 6500 CPU families support only
MMI/O and the 8080, 280, and 8086 CPU families support
both MMI/O and Al/O. The Sinclair family of computers uses
the 280 CPU, so technically these machines should support
both MMI/O and AlO. Prepare to start your list of
uniquenesses — the Sinclair machines do not support MMI/Q.
Normally the Z80 CPU does, but because of the way that
the address bus is decoded by the Sinclair computers,
MMI/O is not possible. This leaves AL/O as the only means of
transferring data, which leads us to the second uniqueness...
The Sinclair hardware wil] support Al/O, but no commands
have been included in the Sinclair BASIC instruction set to
accomplish an AI/O. This means that the input/output
routines must be written in Z80 CPU machine language.
placed in RAM memory, and called as subroutines by the
BASIC language programs. Fortunately Sinclair did provide
this capability with the BASIC “USR” command, which [
will discuss later.

Before we look at the software details involved in
interfacing the Sinclair computers, let me add two hardware
details to your list of system uniquenesses. First, if data is
input using even device codes (e.g., IN 00H, IN 02H, IN 04H,
etc.) the two highest order bits of the data bus (D6 & D7)
will automatically be masked to zeroes. Note that the “H"
after the above numbers refers to hexadecimal format.
Using a "D” after a number means decimal format. This
means that if you use even device codes, only six bits of the
eight bit data bus are valid. Secondly, if data is output using
odd device codes {e.g., OUT 01H, QUT 03H, OUT 05H, etc.)
the computer will crash! The solution to these hardware
problems is to always use odd input device codes and even
output device codes. This stil] leaves 128 input and 128
output device codes to work with. The important thing is to
keep these details in mind 8o that you can design around
these limitations as you create interfaces for the Sinclair
machines.

Armed with the above details, we are ready to look at the
hardware and write the programs required to accomplish an
interface using the Sinclair machines. Figure 1 shows a
general hardware configuration which will allow data
transfers between the Sinclair and the interface circuit. The
two “OR" gates, the "AND" gate, and the 74L.S138 form an

address decoder which is capable of generating eight device
codes (from 00H to O07H). Using the above decoder
configuration, four even device codes are generated (00H,
02H, 04H, 06H) which can be used for outputting data, and
four odd device codes are generated (01H, 03H, 05H, 07H)
which can be used for inputting data. As shown in Figure 1,
the even decoder outputs are connected to latches which
transfer data out of the computer, and the odd lines are
connected to tristate devices which transfer information into
the computer. As you can see, the hardware required to
accomplish an interface is relatively straightforward.
Unfortunately, there are software oddities which make the
programming somewhat more involved.

Writing Programs

For the Interface
The first task of writing software for the interface is to
reserve “safe” space in the Sinclair's RAM memory to store
the machine language routines. This is required because the
Sinclair moves data around in its RAM memory as it
executes 8 BASIC program, and if your machine language
routines are not protected they could be overwritten. The .
task of reserving space for the machine language routires
will be different, depending upon which computer you are
using. For the TS1000 and the TS1500, reserving space can
be accomplished in the first line of the BASIC program with
the use of a REMARK statement. The REMARK statement

7415373

TRI -
STATE

From DEVICE

Intertace

.

Circuit

7415373

LATCH

Pin Pin Pin
Assignments Assignments Assignmants
for for for
Spectrum TS2068 751000

ang

To

TS1500

Intertace <

Circuit

74L504

00

—

3
7415138
01 2

02

03

To
Additional 04
Latches 05
06
(o 24

5

To
Additionai
Tristate devices

(=
2

741500

741532

Figure 1

8 Tredlzrouer Lolima

takes the following form:
1 REM 1234567890.

In the above statement, the Space reserved for machine
instructions is filled with the characters 1 through 0
following the REM statement. The TS1000 and the TS1500
begins storing BASIC instructions at memory location 16509
(D). Two bytes are used for the line number, two bytes for
the line length, and one byte is used for the REM command
code. This places the character “1” at memory location 16514
(D). The reserved space ends with the character “0”, which
resides in memory location 16523. If you need more space
for machine instructions, you simply place more characters
after the REM statement. If You want to know how much
space you have reserved, count the characters after the
REM statement. If you want to know the ending address of
the reserved space, just add the number of characters after
the REM statement to 16513. The reason for reserving
space via the REM statement when using the TS1000 and
TS1500 is because it is the only way to save machine
language routines on a cassette tape. For the color
computers (SPECTRUM and TS2068) however, memory
space can be reserved above the BASIC command area and
still be saved on cassette tape. Reserving space on the color
computers is accomplished with the (" “AR command. The
CLEAR command takes the following form:

1 CLEAR 32129,

The above command reserves memory from location 31130
(D) to the top of RAM memory. As mentioned before, this
space is protected when BASIC executes, and it can be
saved on cassette tape.Once you have reserved sufficient
space for the machine language routines, you can then place
the desired machine language instructions into the reserved
space. This is accomplished by sequentially POKE-ing each
machine instruction into the reserved area. Of course, if
your machine language routines become large, this POKE-
ing process can be tedious and error prone. In next month's
“Interfacing Tips and Troubles,” we will present a short
BASIC routine which automatically POKES the machine
language instructions for you. In addition to the automatic
POKE-ing routine, we will explore the BASIC and machine
language routines necessary to complete an interface using
the Sinclair computers. [

Editor’'s Page. continued
few months shouid be very interesting.

When I receive my copy of InfoWorld, the first thing I do
is look for the latest news about who is laying off their help
or going out of business. The list grows every week and']
was startled to see that Softalk was one of the latest
causalities. Some of the other recent drop outs are: Micro
Computing (formerly Kilobaud), PCyr, Peanut, Compute's
PC and PCjr, St. Mac, Whole Earth Software Review, Color
Computer, Computer Accessories & Peripherals, Atari
Connection, St. Game, and Personal Software. Another
large magazine ran a total of 1,472 pages for the period July
thru September of 1984 compared with 1,808 pages for the
same period last year. That is a decrease of 336 pages, or
about 19% for the three month period.

Not everyone danced to the same drummer, however, and
there are publishers who appear to be in good condition.
Some which I am familiar with are: Nibble Magazine, which
contains very good assembly and BASIC programming for
the Apple® , Micro Cornucopia with hardware and software
information for the Big Board® , Kapro® , and Xerox 820° ,
and Apple Assembly Line with assembly language for the
Apple (they also market the S.C assembler and word
processor). I am sure that there are others, but these are
ones with which I am familiar, and it is interesting to note
that they are all controlled by the originator.

What does all this mean for The Computer Journal? It
means that we intend to stick to our convictions of serving
our readers and restricting our growth to that which we can
finance without losing control to the venture capitalists. We
would like to expand the magazine to about 64 pages
without too many advertisments and spend about $60,000
for additional promotion, but we cannot afford to do that
right now and we'll just have to grow as fast as we can by
bootstrapping ourselves up from where we are. We intend
to provide the information that the large circulation cannot
afford to cover, and we really do pay attention to what our
readers have to say. Take the time and effort to drop us a
line with your thoughts. a

Nibble Magazine, 45 Winthrop Street. Concord. MA 01742
Micro Cornucopia. PO Box 223, Bend, OR 97709
Infoworld, 1060 Marsh road. Suite C-200, Menlo Park, CA 94025
Apple Assembly Line. PO Box 5537, Richardson, TX 75080.
Apple is a registered trademark of Apple Computer, Inc.
Kapro is a registered trademark of the Kaypro Corporation.
Xeror 820 is a registered trademark of the Xerox Corporation.
Big Board is a registered trademark of Digital Research. Inc.

“Gone Fishing!"— That’s What Our Authors Said

This issue of TCJ is later than usual because we did not anticipate the delay in receiving
manuscripts during the summer vacation period. We have a number of very interesting articles in
progress, including some from new authors, but they are not quite ready for this issue.

We are looking forward to expansion and growth during our second year of publication and are in
the process of relocating and revising our printing department in order to reduce the lead time and
improve the quality.

We appreciate your letters and suggestions. Take the time to let us know what you want and tell

us about people you feel are qualified authors.

Books of Interest

Microprocessors for Measurement and Control
by David M. Auslander and Paul Sagues

Published by Osborne/McGraw-Hill

630 Bancroft Way

Berkeley, CA 94710

310 pages, 7" x 9", softcover, $16.95

The design of mechanical and process equipment using
microprocessors requires skills which are not treated in
depth by most computer books. Microprocessors for
Measurement and Control, which includes actual case
studies, explores problems of increasing complexity and
presents the complete plans and specifications for prototype
systems. The authors take you step by step through the
design examples. This is very helpful, as too many other
books treat the subject on a theoretical level without
concrete examples of real world applications.

The case studies are not tied to any particular language
or computer, but stress the importance of developing
machine independent problem solutions. The solutions to the
examples are provided in either assembly language,
FORTRAN, BASIC, Pasecal, or C, and cover the 8080/8085/Z-
80 series of 8 bit processors and the PDP-11/LSI-11 series of
16 bit processors.

*Chapter 1 “Microprocessors as Components in
Engineering Systems” introduces the use of
microprocessors in measurement and control and
previews the case studies. This chapter includes
information on speed/duty cycle characteristics of DC
motors, pulse width modulation, A/D and D/A
conversion, and response time.

*Chapter 2 “Information and Power" introduces
the concepts of analog and digital signals and includes
information on analog signals, coding of analog
information, digital signals, timing of digital signals,
typical output thresholds, synchronization using a
clock, digital communications protocol, tristate logic,
and noise and noise sources.

*Chapter 3 “DC Motor Control and Testing”
covers the speed control of DC motors, and includes
information on modulated digital signals, pulse width
modulation, pulse frequency modulation, problems of
pulse detection, timing programs, velocity
determination program, and the motor controller.

*Chapter 4 “Position Control with a Stepping
Motor™ discusses the speed-power-cost trade offs in
sensing and controlling the position of an object. The
application of a stepper motor is illustrated with
information on feedback versus no-feedback, dedicated
microprocessor controllers, storing the program, the
parallel interface, CPU assembly language
instructions, accessing the control port, binary
instruction codes for output port test, loading and

running the program with a monitor, pulse train
generation, timed waits, running the stepping motor,
direction control, pulse timing using an external clock.
and the stepper motor controller circuit.

*Chapter 5 “Temperature Control” continues the
exploration of programmed I/O and discusses the use
of a terminal and programming techniques to permit
the operator to interact with the control program
without interfering with the control process itself.
Sections include interrupts, clock interrupt program.
terminal interrupt program using indirect addressing,
terminal output interrupt test program, the control
algorithm, the blending control program, terminal
input interrupt program, terminal output interrupt
program, and the clock interrupt program.

*Chapter 7 “Automatic Weighing™ covers the design
of a scale using strain gauges in a DC bridge with an
amplifier, and includes information on weighing algor-
ithms, filtered output, weighing program logic, graphic
display of weight distribution, communicating with a
supervisory computer, program structure, ring buffers,
character handling, serial line interrupt routines,
message processing, modified clock interrupt routine,
and strain gauge bridge and amplifier circuit.

*Chapter 8 “A Polar Plotter” emphasizes the
hardware and system design aspects of microprocessor
systems. Topies include the design trade offs
associated with the drawing speed, resolution and line
quality of a radial arm digital plotter, software control
of the stepper motor, timing and ramping, micro
stepping, polar plotting algorithm, real time software
time constraints, floating point arithmetic operations,
scaling, high level language considerations, and
construction of the final prototype.

*Chapter 9 “An Automated Cutting Machine”
covers the complete design cycle for a stand-alone,
single-board system for use in production machinery.
Covered in this design of a computer controlled cut-off
machine for producing discrete lengths of a product
from a continuously produced material are sequential
logic, relays, programmed logic, the design approach,
hardware selection, switch debouncing, operation
simulation, a single board computer, and
microprocessor development systems.

*Appendix A contains DC motor control programs
in BASIC, Pascal, and C, plus 8080 assembly language
listings for stepping motor, temperature control, and
blending control programs.

sAppendix B contains DC motor control,
automated weighing, and polar plotter programs in
FORTRAN, automated weighing programs in C, plus
PDP-11 listings for stepping motor, temperature
control, and blending control programs. [

10 TmeCorpuer . uma

RPM vs ZCPR;:

A Comparison of Two CP/M Enhancements

by Bill Kibler

In the series of articles on System Integration (The
Computer Journal Vol. 11, Nos. 2-4) I expressed the point of
view that a user might be better off buying an enhanced

' disk operating system than getting the newer and more
. complex CP/M 3.0. Well, that line bothered me for some
time and I finally decided to validate my position with an
article that covered two ways to go. The first program is a
CP/M replacement called RP/M. The other choice is the
public domain program ZCPR. I will try and cover the good
and bad points of these two programs so that you can decide
for yourself if they will give you the desired enhancements.

Introduction

CP/M is a disk operating system composed of three parts.
The CCP and BDOS are supplied by Digital Research, and
the BIOS is written either by yourself or by the maker of
your system. The CCP is the command processor and takes
your request for action and either runs the requested
program or provides one of the internal functions such as
listing the directory. Most of the requested commands are
turned into multiple calls to the BDOS (Basic Disk Operating
System) to produce the necessary results. Some of those
results will require many hardware inputs and outputs,
which are done through the BIOS (Basic Input and Output
‘System). These basic operations are what gives CP/M its
standardized format, allowing many programs to work on
many systems.

A more precise understanding of the interactions is
needed before you can see why some changes might be
wanted. First, the entire program is written in 8080
assembly language. For systems running on Z80 CPUs, this
is not the most effective use of the hardware. The Z80 has
many more registers and some special functions that can
move large amounts of data much faster than 8080 code.
Besides speed improvements, CP/M has several little quirks
that can be most annoying. My favorite complaint is the
TYPE command of the CCP. This function will start
scrolling off text at a rather rapid speed without any way of
going back a page or controlling just which page you are
looking at. I suppose many people dislike the PIP command
destination = source file description, and would like to
change that too.

What Does What
What is needed now is an understanding of exactly what
does what. The CCP has six built in commands which are
TYPE, DIR, ERA, SAV, REN, and USR. The CCP takes
your command line of data (again in the CCP) and converts it
to the number and type of BDOS function calls to achieve

the desired results. If your request is not one of the six
resident commands then the program is loaded and your
requested extra commands are passed along to the new
program. Some error handling is done in the CCP, but most
of it relates to the internal commands.

The BDOS has about 40 function calls that represent all
the possible ways information is passed within the system.
These function calls cover everything from a request for
warm boot to writing data to a random file. The most
commonly used one is for reading and writing to the console
device {console in and out). The BDOS entry point is called
with the C register loaded with the appropriate number for
the function requested. The BDOS then reads the C register
and jumps to the corresponding routine. To keep
compatibility, these routines should remain the same—the
use of non-standard function calls are to be avoided at all
cost.

Some systems, especially those enhanced CP/Ms like
Heathkits, have added their extras on the BIOS. These
extras can be done by trapping commands in either console
routines or disk routines. A common example of an
enhancement is a RAM-DRIVE routine. The one I use loads
above the BIOS and replaces the disk call entry points at
the front of the BIOS with the new entries of the RAM-
DRIVE. The new entry points will check for reference to the
new drive and jump into the proper place. For non RAM-
DRIVE calls it jumps to the original routine’s address that
was saved before the BIOS entry points were changed. This
type of enhancement is easy to install and modify. An extra
feature of such programs is the ability to use several
versions, each with a feature turned on or off. For
recovering data in RAM-DRIVE after a master reset, I run a
version that does not clear the directory area.

ZCPR and RP/M

Versions one and two of the public domain program ZCPR
are Z80 versions of the CCP. This program is a replacement
for the normal CCP and also uses a handful of extra
programs to obtain the enhancements. Besides speed (from
the Z80), many of the alltime annoyances have been
changed. The program and its files are spread over many 8~
disks. If you buy these disks from your club or user group, it
will cost you about $50 to $70. Although the cost is a factor,
it is nothing compared to the thickness of the
documentation. One point I didn't make in my article about
documentation is “don't overdo it!" I feel that the authors of
ZCPR have written s0 much about the program that the
documentation becomes both confusing and redundant. This
also applies to the programs supplied with ZCPR. There are

many accessory programs for use with ZCPR, each with its
own documentation. Considerable disk space will be needed
for the accessories but the Z80 version of ZCPR is the same
size as the CCP.

For those looking for limited enhancements without major
operation changes, & complete CP/M replacement is RP/M.
Several minor but desirable changes to the RCP {the CCP
part) give you paging in the type command. The biggest
advantage of the program is the complete listing. Because of
the listing, it is possible to change minor features by using
DDT. I didn't like the fact that this program was exactly
like CP/M in every way, including the > symbol. I decided I
needed a way to tell the difference, so I got out the book,
found where the routine outputs the >, and presto, now
RP/M uses a } symbol instead. This was helpful later when
I found that DSKFIX (a disk fixer utility) wouldn't work, as
I immediately knew to load my CP/M version and it worked.

Installation

Of the two programs, RP/M is by far the easiest to install.
The manual's first page provides all the needed instruction
for a normal installation. I asked several friends to look at
the book and try the installation, and all had little trouble.
Of the several systems I tried installing it on, only the
SDSystems caused any problem. If you have been following
my articles over the last year, you will know something
about this system. The SDSystem has a ROM at FOO0Oh and
a rather short BIOS, as all calls are into the PROM. RP/M
has an install program that finds the BDOS scratch table
and subtracts 200h for the beginning of BDOS. Now this
method is supposed to be the safest way to get the address
of your CP/M (page 0 data can be messed up by DDT type
programs).

My 62K CP/M gives an erroneous system value and yet
works properly when moved to 64K. I have as yet to find
out why this is, but the author of RP/M has provided an
alternate method of loading a system. This alternate method
is both for loading a system at unusual or hard to find
addresses, and for generating oddly placed systems. My only
complaint here is that it took me a considerable amount of
time to find the instructions for locating the system at an
unusual address. The instruction is on the disk under
“MEMSIZ.DOC,” not “"RP/MGEN.COM" as the book states.
This problem was quite hard to identify at first, as the
system was loaded in the right place, but nothing
functioned. After considerable experimenting and some help
from the author which sent me to all the wrong places, I
discovered that it was just assembling the program 200h
low. So don't forget to check where it is relocating itself to
before looking for more difficult problems. This involves
calculating new addresses for the first two jumps in the
RCP from the listing in the manual.

To install the ZCPR program will simply require doing a
system modification under DDT and reinstalling it on the
boot tracks of the disk. For full use of all accessory
operations however, changes in the BIOS will also be needed
(total changes may reduce TPA by 1K). If you buy the ZCPR
from one of the systems houses, or from a magazine like

Microcornucopiat (a magazine for single board systems like
KAYPROs) all the assemblies will be done. If this is your
first attempt at system modification, the programs will be 2
bit of a challenge. The manual even states this up front,
which helps account for the extra amount of documentation.
Some tutorial information is given for those with little
experience in doing system programming. Many of the
accessory programs will also need assembling before use.
This program is in Z80 code, MACROs, and many different
forms (an 8080 version is available too) so you may face
several other problems in getting the thing together (you
will need DRI's MAC assembler or Microsoft's M80/L80).
In reality, it goes together fairly easily and can be a good
practice or learning session on using all the programs needed.

Support

For support, RP/M is still the best, as you can call them
up and get help. ZCPR is a public domain program and as
such, lots of people have worked on it —it can be pretty hard
getting help from them. Most computer clubs, however, will
have several people running ZCPR (few will know about
RP/M) and they will provide the best source for help. RP/M,
on the other hand, was intended for OEMs as an alternative
to CP/M. This commercial slant to RP/M gives it some other
benefits, mainly a professionally printed manual. RP/M’s
manual is good not only in content but also in the way it
explains some of the information. The manual does not cover
everything, but gives enough information for you to see how
it is all done. The listing for assembly language
programmers provides a wealth of information about how
things are done. If you really get creative, you can
disassemble RP/M and have your own versions. It took me
about three days to disassemble it and find my errors (use
DISASM.BAS on SIG/M 23). Now, I would not recommend
this for just anyone, but I had thought that I was getting
the ASM file on disk, since the advertisement says, “printed
listing provided.” Should you really want to change things
around you can get the full assembly of RP/M, which is not
possible with CP/M. You could also disassemble CP/M and.
with the help of RP/M, try and figure out what does what. I
felt it was just easier to buy RP/M.

ZCPR is provided in assembly on the disk and will allow
you to change it as much as you want. The difference is the
BDOS. ZCPR is just a CCP enhancement and is not going to
effect the BDOS calls at all. So it comes down to whether
you want changes in the BDOS or the CCP. This brings us to
what your real goals are, and what shortcomings you wish
to correct.

Problem Solving

What both of these programs demand is that you
understand your needs and your system. I prefer RP/M, as it
fits exactly within the same space as CP/M. You may want
ZCPR for all the extra system enhancements. Some may
find both programs a waste of time and money. I personally
feel that your level of programming experience will
determine your needs. Systems programmers spend several
hours each day working within the system. This may include

tMicrocornucopsa. PO Box 223, Bend. OR 97709,

12 "re Computer Jourma

checking the directory, using threaded directories (like in
ZCPR), assembling and reassembling (using fancy SUBMIT
programs), and possibly quick loading systems. All of these
system operations are for special needs. Now, you might be
doing lots of data handling and need the threaded file
directories to speed your operation, but for a lot of people,
plain old CP/M will do. I guess my big complaint would be
the need for more disk space for ZCPR's extra programs. If
I had a hard disk, I think ZCPR would be an absolute
necessity, as keeping track of the number of programs on a
disk could drive one crazy. Both programs have the USER ¢
common to all areas, with ZCPR able to set the path for
searching the drives and user areas for a program.

Conclusion

You might still have a lot of questions about these
programs, but the fact is, there just isn’t that much good or
bad to say about them. RP/M worked as advertised, and the
two problems are minor. The failure of the auto install
programs was handled by the ability to assign it an address
to load at. One problem that came up was the non-operation
of DSKFIX and lack of an ASM file on the disk. I consider
the ASM file to be the main reason for buying the program,
and without it I really question its usefulness. If paging in
TYPE and USER 0 function are your only reason for getting
the program, don't —there are patches to CP/M available to
change that. There are also several public domain programs
that can give you some of those enhancements without
changing anything in your system.

In ZCPR I have trouble seeing enough advantages over
the utilities I already have on disk. As I just said, making
the patches to CP/M may be more than enough for most
users. I generally do most of my work on single sided single
density 8 disks (I do lots of work over several systems) and
find that disk space is a problem —1I would have no use for a
threaded directory listing. I guess what it comes down to
again is knowing what you need and seeing if these
programs meet that need. These are not the only
enhancement programs available, so check the
advertisements closely. I still feel that you will be better off
checking with your local computer club and finding someone
using what you think you might want, and trying it out first.
Nothing replaces experience with these systems, or with
any system for that matter. '

Soapboxing

In concluding this talk on enhancements, I feel some
comments on my philosophy of computing are needed. I am a
stickler for documentation, not only for the needed
information, but for information you may not know you
need. This point is also important when buying software,
because your needs will change as your skills in using it
change. These two programs are good examples of changes,
which, once they are installed, may breed more reasons for
their use. I personally prefer a system in which I can have
full control over how it does what. The idea that someone
else has decided how 1 will do my computing defeats the
idea of microcomputing. Personal computing doesn’t only

mean that it fits on your desk, but that it meets your
personal style of doing business, keeping data files, and in
my case, writing articles for publication. The m-re I write
and use my Z100, the more I like it. At the same time,
however, I keep finding how little I use a lot of what I paid
for. All these extras are worthiess if they are never used,
and I am afraid that buying computers is the newest form of
status.

It seems that speed trials and fancy packaging are more
important now than good design. Although this may be a fad
that will pass once the majority of users become educated, [
have my doubts. The craze over the IBM PC, a rather poorly
designed product, shows how little the knowledgeable
people can affect a product’s sales appedl. Without
continuing my soapbox stand, let me conclude by saying how
important it is, and will continue to be, not to be swayed by
advertising. Start by developing real shopping habits that
include finding and cultivating friendships where knowledge
becomes a part of your activity goals. Not everybody can
afford to buy every piece of software or book written on the
subject, but through eyeball to eyeball contact we can
spread our own experiences around and save considerably
on the frustration involved. The Computer Journal is also a
medium for expressing those newly learned answers to
problems. We know people are reading these articles and
have different viewpoints on the topics covered. I have
received a few comments on my articles, but what I would
rather see is articles that grow on what I have started. If
you have installed ZCPR2 and found it to be just what you
wanted, let us know WHY, HOW, and WHAT happened.
Only through this exchange can we improve both The
Computer Journal and your computing abilities.

DISASM.BAS

I know several people will want the information on using
the disassembler (especially since I enhanced it), so I have
supplied the changes to it. These changes give you control
over the size of the disassembly, as the program is rather
slow and creates an extra large file. The normal program
turned the 6K RP/M into a 98K text file with a line of text
produced for each byte. After shortening it (address, hex
value, mnemonics per line), it will do a 38K text file. Several
versions are possible, and with the program being in BASIC
it will be possible for just about everybody to change and
run it. I tried other disassemblers on SIG/M disks and found
this to be the best. My next project with this program is to
give it a set of 8088/86 files and try using it under MSDOS.
After a disassembly, I used Wordstar's subsitution program
to change addresses to names, but watch out—sometimes
the equates use the same address for two different
functions.
45 PRINT “Thais pProgram modified for shortened output sequence
;::‘F;:B: "SHORTER FLAG
735 PRINT S - Eliminate long listing "$:IF FO=1 THEN PRINT
TAR(35):~ Shortened" ELSE PRINT
845 IF S="g" OR S="S" THEN If FQ=8 THEN F@=x1{ ELSE FQO=@
295@ IF Al:@ THEN D=2¢ ELSE D=@

2968 IF FC=1 AND (FQ=@ OR Al=8) THEN PRINT N3 IF Al>9 THEN PRINT

TAB(1@) 3 ZCOM;
2978 IF FP=| AND(FO=@ OR Al=@) THEN LPRINT Ni:[F Al 9 THEN LFPRINT

TAB(10); 2COM;
continued

I COMPUTER"®

T TRADER
MAGAZINE

* % »LIMITED TIME OFFER « « #
BAKER’S DOZEN SPECIAL!
$12.00 for 13 Issues

Regular Subscription $15.00 Year
Foreign Subscription: $55.00 (air mail)
$35.00 (surface)

Articles on MOST Home Computers,
HAM Radio, hardware & software reviews,
programs, computer languages and construc-
tion, plus much more!!! ’
Classified Ads for Computer & Ham Radio Equipment

-FREE CLASSIFIED ADS
for subscribers
Excellent Display and Classified Ad Rates
Full National Coverage

CHET LAMBERT, WAWDR
1704 Sam Drive * Birmingham, AL 35235
. (205) 854-0271
“Sample Copy $2.50

2986 IF FuW=1 AND (FO=0 OR Al1=0)THEN PRINT 82,N32T;:IF Al>8 THEN
PRINT®2,ZCOM; 275215275

2996 IF C(1)>@ AND C(2) @ THEN Y@=Y(1)+" “+Y(2) ELSE Y@=Y(1)
3008 IF FC=1 AND (F@=@& OR Al=@) THEN PRINT TAB(1@+D);Y(@)5:1F
C(1)>8 THEN PRINT TAB(16+D):Y8;

3814 IF FP=1 AND (FR=@ OR AI=8) THEN LPRINT TAB(10+D);Y(8)3:1F
C(1) >0 THEN LPRINT TAB(16+D);Y@;

3828 IF FW=1 AND (FR=8 Ok Al=@) THEN FRINT #2,Y(8)3IT;:1F C(1)=0

THEN FRINT #2,2T;IT; ELSE PRINT #2,v@;IT::IF LEN(Y®) 8

THEN FRINT #2,27;

3030 IF FW=1 AND Al1=8 THEN PRINT #2,27:IT;27;

3040 IF FC=1 AND F@=@ THEN PR"T.T TAB(5@);ICOM; ZBYTE; > =;0; "
P

3841 IF FC=t AND F@=1 AND Al=8 THEN PRINT

3056 IF F.o={ AND FO=@ THEN LFRINT TAB(S@); 2COM; ZBYTE; ™~ “;0;~
g3

IA51 .F FP=1 AND FQ@=1 AND Al=@ THEN LPRINT

3060 IF FW=1 AND FQ=6 THEN PRINT €2, ZCOM; ZBYTE; 27305 2T3F
3861 IF FW=1 AND FQ=1 AND Al=8 THEN PRINT #2, 27

3078 REM IF FC=1 AND MIDS$(N,5,1)="F" THEN PRINT

3088 IF FP=1 AND MIDS$(N,S,1)="F" THEN LPRINT

Sources:

RP/M from MICROMETHODS, PO BOX G, 118 S.W. 1st,
Warrenton, Oregon 97146; Cost $75 plus $5 mailing. By
Jack D. Dennon

ZCPR SIG Disks:

#66 FIRST CUSTOMIZED CCP REPLACEMENT
ZCPR-14.ASM ON DISK

#77 ZCPR-16 FOR ZCPR 1.0 AND 1.6

#86 ZCPR-10 UPDATE ON THIS DISK WITH OTHER
CP/M UTILITIES

Tne Computer Jourra 13

FREE SOFTWARE
RENT THE PUBLIC DOMAIN!

User Group Software isn't copyrighted, so there are no fees to
pay! 1000's of CP/M and IBM software programs in .COM and
source code to copy yourself! Games, business, utilities! All
FREE!

CP/M USERS GROUP LIBRARY
Volumes 1-92, 46 disks rental—$45

SIG/M USERS GROUP LIBRARY
Volumes 1-90, 46 disks rental—$45
Volumes 91-176, 44 disks rental—$50
SPECIAL! Rent all SIG/M volumes for $90

104 FORMATS AVAILABLE! SPECIFY.

IBM PC-SIG (PC-DOS) LIBRARY
Volumes 1-200, 5% " disks $200

Public Domain User Group Catalog Disk $5 pp. (CP/M only)
{payment in advance, please). Rental is for 7 days after receipt,
3 days grace to return. Use credit card, no disk deposit.
Shipping, handling & insurance—$7.50 per library.
(618) 914-0925 information,
(819) 727-1015 anytime order machine
Have your credit card ready! VISA, MasterCard, Am. Exp.

Public Domain Software Center
1533 Avohill Dr.
Vista, CA 92083

#88 SYSLIB DOCUMENTATION, LIBRARY
UTILITIES USED IN ZCPR

#89 SYSLIB.HLP,MAC FILES AND DOCUMENTS

#90 MORE SYSLIB MAC FILES

#98 1 OF 10 ZCPR2 DISKS, VERSION 2 OF SYSLIB 2.3
LIBRARY

#99 ASM FILES OF 5 SUBPROGRAMS OF ZCPR2
ie:DU2

#100 14 MAC FILES FOR UTILITIES TO GO WITH
ZCPR2

#101 13 MORE MAC UTILITIES

#102 31 UTILITY COM FILES AND 4 HELP FILES

#103 11 HELP FILES

#104 ZCPR2 CONCEPTS AND INSTALLATION
MANUALS

#105 ZCPR2 USERS GUIDE

#1068 ZCPR2 SYSLIB DOCUMENTATION

#107 MORE ZCPR2 SYSLIB DOCUMENTATION

#108 ZCPR2 MODS AND UPGRADES

#116 SOME UNOFFICIAL ZCPR2 UPGRADES

#122 ZCPR2 FOR 8080 MACHINES, NEEDS VOLUMES
98-108 FOR SUPPORT

#124 VOLUME ONE OF UPGRADES TO ZCPR2

#125 REST OF UPGRADE WHICH INCLUDES
KAYPRO, MORROW, OSBORNES [

14 Tre Computer souta

AC CIRCUIT ANALYSIS ON A MICRO
Applications of BV Engineering’s “ACNAP”

by Art Carlson

Analysing bandpass filter designs has always been
something I avoided if at all possible, so when I became
interested in active filter design I looked for & way to turn
the drudge work over to the micro.

The requirements of the program I wanted were
reasonable cost, ease of use, flexible (with easy to change
parameters for rapid design changes), and the power to
handle many types of circuits. I really didn't expect to find a
program which would fill all the requirements, especially at
a reasonable cost, but I saw BV Engineering’s ad for their
ACNAP (Electronic Circuit Analysis Program) which
sounded interesting and was priced at only $69.95. We
requested a copy for evaluation on our CP/M-80 system, and
received the disk plus a 27 page manual with instructions on
using the program and a step-by-step example.

ACNAP is written in FORTRAN, compiled into machine
code for the system on which it is to be used, and is menu
driven. The initial screen is shown in Figure 1, and the first
step is to choose whether you want to enter a new circuit or
read an existing circuit. If you choose to read an existing

L2222 2222232222222 222 s 222222 s]2 2
AC NETWORK ANALYSIS PROGRAM (ACNAF) =
* - — *
* CP/M-80 vi.4 Serial # 21887 #
* Written by 6.P. Boucher *
Copyright 1983 BY ENGINEERING *
Y R Y YR R 2]

MAIN MENU:

1) Enter new circuit manually
2) Read old circuit file

Enter choice ?

Figure 1

circuit, you are asked for the drive number and the
filename, and then presented with the command menu
shown in Figure 2. If you choose to enter a new circuit, you
are asked for the number of nodes, and then the component
values and tolerances. After entering the data, the circuit
can be analyzed with the output to either the screen or the
printer, or the circuit design can be saved to the disk. In
addition to listing the magnitude and phase of the output,
you can alsc run a Monte-Carlo analysis to determine the
effect of random component variations, compute component
sensitivities, or save special disk files for plotting the
results or for spectral data analysis. The best way to
understand a program is to use it, and the following example

will demonstrate using ACNAP on a multiple feedback
bandpass filter.

MENU: 1) Enter new circuit manually
2) Read old circuit file
3) Save circuit 1n file
4) List circuirt values
5) Change component value(s)
&) Run circuit (or PLOTPRO dump)
7) Run Monte-Carlo on circuit
8) Compute component sensitivities
9) Save spectral data i1n file
18) Toggle printer on
11) Compute noise equivalent bandwidth
12) Quait

Figure 2

Bandpass Filter Analysis

This program analyses an existing design, but does not
determine the component values for the initial design, so we
will analyze the circuit on page 151 of Design of Op-Amp
Circuits by Berlin (from the Blacksburg series published by
Howard W. Sams) in order to demonstrate the use of
ACNAP. This is a multiple feedback bandpass filter as
shown in Figure 3.

On the first menu we will choose the new circuit option,
enter the number of nodes (4), and then enter the component
values as requested. Note that all frequencies, component

Figurs 3: Operational ampiifier such as the 741.

values, and component tolerances must be entered as
floating point numbers. A floating point number is a number
with a decimal point in it or one described in scientific
notation such as 1000.0 (the decimal point and trailing zero
are necessary) or 1E + 3. Node 0 is always the ground node,
and node 1 is always the input node. The output may be any
node and is requested by ACNAP during the analysis. The

allowable range is 2 to 20 nodes not including the ground
node 0, and a maximum of 60 components with not more
than 10 of these being controlled voltage sources.

After entering the number of nodes, ACNAP asks for the
capacitor value, tolerance, and node connection points
starting with C1. ACNAP will ask for the values of C2, C3,
etc. until a capacitor value of zero has been entered. Next it
will ask for the values of the inductors, and since we do not
have any inductors in this circuit we will enter zero for the
first inductor value. Then we enter the values for the
resistors. The “+Node” and the *-Node” are
interchangeable for inductors, resistors, and capacitors. No
polarity is assigned for these components and the nodes only
refer to each end of the component.

The last component type to be entered is the voltage
controlled current source which must be entered a little
differently because ACNAP needs to know the nodes
between which the current source is connected and also the
nodes which control the current source. The polarity is
critical for the current source, as positive current is
delivered to the “ + " node if the "+ control node is more
positive than the “-"" contro! node. After entering all the
values, ACNAP will return to the main command menu as
shown in Figure 2.

Now ACNAP is ready to analyze the circuit, but first we
will choose item 3 to save the circuit values to a disk file
which we will name ACTFIL. The file naming procedure
varies with the different operating systems, but for the
CP/M system which we are using we are allowed eleven
characters which must be all upper case and we are not
allowed to use a period for file extension. After saving the
file, we will choose item 4 to print out a list of the
component values so that we can check for errors (see
Figure 4). Next, we select item 6 to run the circuit with a
minimum frequency of 700.0 to 800.0 (remember the decimal
point and the trailing zero) with 25 intervals using a linear
sweep and node 4 as the output with the data going to the
printer. ACNAP asks for the required parameters and then
runs the circuit as shown in Figure 5.

Examination of the data shows that the frequency of the
filter using the nominal component values is between 736
and 740 Hz. Another run could be performed between these
limits to find the exact design frequency, but in real life the
frequency depends on the actual component values and not
their nominal value. A more useful step at this time would
be to choose option 7 from the menu to run a Monte-Carlo
analysis on the circuit during which ACNAP builds a

Component Value Tolerance +N -N +V -V

c1t . 1000E-67 . 200 2 4

c2 - 1900€E-07 . 200 2 3

R 1 . bBOOE +05 . 100 1 2

R 2 . 2700E+94 . 1608 2]

R 3 . 1BOBE +86 - 10a 3 4

KR 4 - 2089E +07 . 206 3 [

R S . 7906E +a12 . 300 4 @

G 1 . 2500E +05 - 300 4 4 4 3
<Enter @ for main menu., @

Figurs 4

Tre looler Lowma 18

Frequency Magni tude (dE) fhase (Deg)
788, 8 1.7314 -157.26
718,49 2.8578 ~183.26
729, 00 2.2891 -169.55
730.00 2.41%5 -1746.82
740 . 88 2.4263 177.51
756 . 0@ 2.3209 171.18
768,94 2.1383 165,172
770. 00 1.8643 159.47
78@. a4 1.5268 154.27
796.0¢ 1.143%3 149.5%
86@. @3 .78929 145.27

Figure 5

number of circuits using random component values within
the tolerance ranges of the components. We specify the
frequency range, number of intervals, type of sweep, node
number to be analyzed, and the number of circuits to be
built. We can run the test at a single frequency by entering
the same frequency for both the minimum and maximum
frequencies. It may take quite a while to run the test if we
specify a large number of circuits and many frequency
intervals, so ACNAP displays the number of circuits
analyzed on the terminal so that we know how the program
is progressing. It took about four minutes to analyse 20
circuits for the active filter over 25 frequency intervals
during our test. ACNAP displays the minimum, mean,
maximum, and 3 sigma limits of both the magnitude and
phase for each frequency as shown in Figure 6 (we only
show data for three of the frequencies). This report will
indicate the variations in the performance of the filter due
to the normal component value variations within their
tolerance ranges.

You should be aware that manufacturers often screen

LA RS A S S R AR R A a2 R R R Y Y T R Y RN R
Frequency= 729,688
Magnitude (dB)...Min= -4, 4481 Max= 3.3619
Mean= . 38962 3 Sigma= S5.9687
Fhase (Deg.) Min= -166.21 Max= 175.67
HMean= -38.318 3-Si1gma= 432.9
L2242 AR 22 R a2 2 R XS R e RS2 22222222222 X RS2 22 XSS 222 2 3
fFrequency= T748. 80
Magnitude (dB)...Min= -3.6833 Max= I. 9189
Mean= .6196@ 3 Sigma= 5.9855
Fhase (Deg.) Min= -178.31 Max = 163.04
Mean= -47.621 3-Si1gma= 431.88
Ly Y Y Y R R IR Y
Frequency= 760.09
Magnitude (dB)...Minz -3.7442 Max= 4. 086809
Mean= .65767 3 Sigma= &.2788
Phase (Deg.) Min= -176.68 Max= 178.99
Mean= -2.9222 3-Si1gma= 461.45
P e Y YT R RS TR T R 2
Figure 6

components and remove the parts which are close to the
nominal value to be sold as precision parts, and that when
you order parts with a large tolerance the values of the
parts you receive may not follow the normal distribution
curve because the values near the center of the curve have
been removed from the population. If you decide that the
data from the Monte-Carlo analysis indicates that you need
to reduce the performance variations because of component
tolerances, you should select item 8 from the menu to
compute the component sensitivities in order to determine
which components have the greatest effect on the parameter
you want to improve. Like the Monte-Carlo analysis, the
sensitivities analysis may be run over a range of
frequencies. The analysis tells you how many decibels the
output magnitude changes, or how many degrees the output
phase changes for a 1% increase in the value of that
component. The sensitivity analysis for the active filter is
shown in Figure 7, and provides the information needed to

Component sens:tivities at T2e.0 Hz .
Component Mag. Sensitivity(dB) Phase sensaitivity(Deg.)
c1 . 14866E-01 -2.2116
c 2 . 1805é -2.3116
R 1 -.B3I939e-61 -.B89283E -61
R 2 .56278E-81 -2.2689
R 3 . 14294 -2.2714
R 4 2. 8080 . PPAD
RS .28610E-05 &. 00090
G 1 ~.14385E-95 . 2AOG
Component sensitivities at 746.0 Hz .
Component Mag. Sensitivity (af) Fhase sensitivity(Deg.)
(ol | —.66358E-61 ~2.3632
c2 .20874E-21 -2.3632
R 1 ~.87830€E-01 -.89523E-a1
R 2 ~.21592E-¢1 —-2.2582
R 3 .63872E-01 -2.3874
& 4 ~.396@85E-25 6. 208
RS . 16689E-65 8. 0090
G 1 [2. po0v
Component sensitivities at 766.8 Hz .
Component Mag. Sensit:ivity(dB) FPhase sensitivity(Deg.)
c1 -. 13856 -2.1943
c?2 -.52135E-981 -2.1943
R 1 -.89728E-041 -.81558¢ -41
R 2 -.87846E-01 -2.08347
R 3 —. 12563601 -2.2747
R 4 9. 0009 @. 2009
RS ~. 1433505 2. PP
G 1 —. 14385 -05 @. 2209
Figure 7
determine which component tolerances can most

economically be tightened to reduce the variation in
performance. By selecting the appropriate items from the
menu, we can change the tolerance (or value) of selected
components, save the revised circuit under another name,
and rerun the circuit in order to evaluate the effects of the
changes.

ACNAP can also compute the circuit's noise equivalent
bandwidth, and save two special types of files for use with
other programs from BV Engineering. When running the
circuit from option 6 on the menu, ACNAP asks if you want

to save the data to disk for use by PLOTPRO (BVE's
scientific graph printing program). If you answer yes to the
question “Write data to diskfile for PLOTPRO (Y/N)?,”
ACNAP will ask for a file name of one to eight characters
with no extension allowed, and will write two files to the
disk with extensions automatically appended by ACNAP.
One file will contain the magnitude data in dB with the
extension .MAG for the CP/M system, the other file will
contain the phase data in degrees with the extension .PHS
for CP/M systems. The PLOTPRO program will not be
reviewed at this time, but we have included a high
resolution graph of this circuit printed on an Epson MX-80
printer (Figure 8). PLOTPRO can print low resolution
graphs with standard 80 column printers or high resolution
graphs with printers capable of printing 132 columns in
compressed mode. I find it is much easier to review the
results of circuit changes using graphs instead of tables of
raw data.

Maghituge
.-

-2.13

e H : : " : : : : : ey

Fremen s

Figure 8

Option 9 on the menu saves the output response to a
range of frequencies in a file which consists of 2565 pairs of
complex numbers which define the response of that circuit
to sinusoidal stimulus of 255 harmonics of the basic
fundamental frequency. This file can be used by SPP (BVE's
Signal Processing Program) to compute the Time-Domain
response of the circuit to any input wave form that can be
defined as a function of time, or as a series of 512 data
points. The result of SPP is the time domain output that the
input wave form would be transformed to by the circuit, and
is useful for transient analysis or analysis of the response of
linear networks to non-linear stimulus.

ACNAP performed well, the menu driven commands
made it easy to use, and the documentation was well
written. There are only three minor improvements which I
would like to see. The first is really the result of my poor
memory—I'd like to be able to see the disk directory
without exiting to the system, because I forget which file

continued on page 22

LEARN MICROCOMPUTERINTERFACING

VISUALIZE SCIENCE PRINCIPLES

Using GROUP TECHNOLOGY BREADBOARDS with your
APPLE® ...COMMODORE 64% ...TRS-80® ...TIMEX-SINCLAIR® .. VIC-20"

Versatile breadboards and clearly written texts with detailed experiments provide basic instruction in interfacing mi-
crocomputers to external devices for control and information exchange. They can be used to provide vivid illustrations of
science principles or to design interface circuits for specitic applications. Fully buffered address. data, and control buses
assure safe access to decoded addresses. Signals brought out to the breadboards let you see how microcomputer signals
fiow and how they can be used under BASIC program control to accomplish many useful tasks.

Texts for these breadboards have been written by experienced scientists and instructors well-versed in conveying
1deas clearly and simply. They proceed step-by-step from initial concepts to advanced constructions and are equally
usetful for classroom or individual instruction. No previous knowledge of electronics is assumed. but the ability to program
in BASIC is important.

The breadboards are availabie as kits or assembled. Experiment component packages include most of the parts
needed to do the experiments in the books. Connecting cables and other accessory and design aids available make for
additional convenience in applying the boards for classroom and circuit design objectives. Breadboard prices range from
$34.95 to $350.00

The INNOVATOR® BG-Boards designed by the pro- The FD-ZX1 1/O board provides access to the Timex-
ducers of the highly acclaimed Blacksburg Series of books Sinclair microcomputer for use in automated measure-
have gained wide acceptance for teaching microcomputer ment, data acguisition, and instrument control applica-
interfacing as well as for industrial and personal applica- tions. A number of science experiments have been
tions. Detailed, step-by-step instructions guide the user developed to aid teachers in illustrating scientific
from the construction of device address decoders and principles. The operating manual contains instructions for
input/output ports to the generation of voltage and current constructing input and output ports. A complete text of the
signals tor controlling servo motors and driving high- experiments will be available later in 1984. The FD-ZX1 can
current, high-voltage loads. BG-Boards are available for the be used with Models 1000, 1500, 2068, ZX81, and Spectrum.
Apple It, I +, He; Commodore 64 and VIC-20; TRS-80 Model
1 with Level II BASIC and at least 4K read/write memory,

Models i and 4. The books, Apple Interfacing (No. 21862)
and TRS-80 Interfacing Books 1 and 2 (21633, 21739) are
available separately.

The Cotor Computer Expansion Connector Breadboard (not shown) for the TRS-80 Color Computer makes it possible
to connect external devices to the expansion connector signals of the computer. Combined with a solderless bread-
board and the book TRS-80 Color Computer Interfacing, With Experiments (No. 21893), it forms our Mode! CoCo-100 in-
terface Breadboard providing basic interfacing instructions for this versatile computer. Experiments in the book show
how to construct and use a peripheral interface adapter interface, how to input and output data; and how digital-to-analog
and analog-to-digital conversion is performed.

Our new Spring Catalog describes the interface breadboards, dozens of books on microcomputer interfacing, pro-
gramming, and related topics including the famous Blacksburg Continuing Education Series, a resource handbook for
microcomputers in education, and a comprehensive guide to educational software; utility software for the TRS-80,
scientific software for the Apple 11, and other topics. We give special discounts to educational institutions and instructors.
Write for the catalog today.

e s Group Technology, Ltd.
Commodore 64 and VIC-20 are UTT’NG P,o, Box 87N
1ster radh rks of Commodor
Busness Macnnes, THSS0 1 s HANDS Check, VA 24072
registered trademark of Radio Shack, AND 703'651 _31 53

a Tandy Corporation, Timex/Sinclair

is a registered trademark of Timex MINDS
C ter C tion.
omputer Corporation TOGETHER

18 Tre lompue o-urma

BASE

A Series on How To Design and Write Your Own Database
By E.G. Brooner

Part Onre: Introduction

W e readers of The Computer Journal like to know how
our microcomputers work and how to get the most out of
them without buying everything the market is trying to
push on us. It is hoped that this series will contribute to
this effort, and that readers will contribute their comments
and questions about this subject. We are especially
interested in your experiences with any special application
of data bases that you have encountered.

The terms “database” and “data base” have been much
abused and mean many things to many people. In the most
fundamental sense a database is any significant collection of
tnformation. It need have nothing at all to do with
computers, but the kind you and I are interested in usually
has that connotation. We get closer to a meaningful
definition if we add that there is some precise and particular
way, or ways, to access the information. A comparison could
be made to the difference between a library and a
warehouse full of books. The warehouse is merely storage,
while the library is organized in specific ways. Perhaps the
ultimate refinement of a library, or a database, is the
provision for extracting different kinds of reports, for
different purposes, from the same overall collection of data.

Information utilities, such as “The Source” and
“Compuserve,” are examples of fairly elaborate databases;
they are characterized by vast quantities of information and
some useful but fairly primitive ways of accessing it.

A telephone directory is a simple analogy of a database. If
the names were not in alphabetical order it would be a
virtually useless collection of names, addresses and
numbers. As the directory exists, you have to know the
name to find the number and the address. This makes it
vastly more useful. The yellow pages add another
dimension—you can find businesses by category. Now,
wouldn't it be nice if you could also find the name or address
if you knew the phone number? Or list all of the merchants
of a certain category in some particular part of town? A
good database could add all of these features and more.

Believe it or not, there are database programs capable of
helping a doctor diagnose and treat disease. Software of this
sophistication is more properly known as an ‘“expert
system” but is basically just a very elaborate database.
There is a world of difference between traditional, large
system databases and those available for micros. The
concept has only been applied to small computers in the past
few years and some of the first packages were indeed crude.

Better packages, many with different features and

capabilities, are becoming available. Some are more difficult
to use than others, and the documentation for some of them
is enough to discourage their practical use. In one sense any
program that stores data might be considered a database
even though it is designed for a single purpose. As we add
flexibility, it more closely resembles a database. If we add
too many features we find that a completely new “query
language” is needed for its use, and we are once again
writing programs from scratch to suit our immediate need.
Definitions differ, and most of us will never see the inside of
the more exotic systems. Very few of us need a database
program that does everything, and if we had it, we probably
couldn’t run it on our micros.

Somewhere there is a balance. Your choice of a database
depends a lot on what you expect to use it for. A program
that prints mailing labels, for example, can dispense with
many features, but it may have some capabilities that are
not necessary for other applications. Knowing what you
need and how it can be done can be a great help in getting
just the right package for your application.

Although the concepts are often blended together, any
database can be functionally described as consisting of four
major parts.

1. The first task is to define the purpose and organization of
the base; this determines everything that follows.

2. The second is the entry and updating of data.

3. The third is data retrieval, and

4. The fourth is the generation of useful reports. Report, as
used here, is a very broad term. It could mean something as
simple as a set of mailing labels or as complex as the
material for a research project.

This series will concentrate on the sort of things that are
practical for the readers of The Computer Journal, most of
whom use relatively modest equipment and are primarily
interested in how things work rather than “what you could
do if you had a million dollars.” It is not intended to be a
tutorial on how to use DBII or any other commercial
package, although we might reference such things from time
to time. In this column we hope to clarify the construction
and use of database programs and perhaps comment on
some of the commercial versions. The main objective,
though, is to present the fundamentals in enough detail so
that you can write your own, or at least evaluate those that
might be available to you.

In talking to the users of commercial database software
for micros, it becomes apparent that no single package suits

everyone's needs. The complaints involve such things as
record size, speed, and methods of retrieval, to name just a
few. One of the best available packages for micros permits
only one key field per record — this is a severe limitation. All
of the available packages have some very good qualities but
none of them, apparently, will satisfy all needs.

An element of primary importance is the manner in which
data is stored and retrieved. This involves file types, file
generation and access, sorting and searching, and many
other features that are part of the programmer’s tool-kit.
The fundamentals are the same in any language but,
needless to say, we have to pick one in order to provide
examples and program listings. I have chosen C-BASIC for a
number of reasons; among these are its overall
sophistication and the fact that it can be compiled. It is
similar enough to other common languages that anyone the
least bit familiar with programming should be able to follow
and apply what will be exposed.

The foregoing, of course, is simply an introduction to the
column. In the next issue we plan to go into some detail in
the matter of disk files and their manipulation. It should be
evident that there is no practical application of database
programming if you do not have at least one disk drive—the
more the better, and the larger the better. A database does
not become a really effective tool unless it can be applied to
very large collections of data. The principles, though, can be
learned with relatively little disk space. (The kinds of tape
systems available to most hackers do not lend themselves
well to the rapid, random, and frequent file access that is
the database's major characteristic.)

If you do not use CP/M and C-Basic, or something very
similar, you may have to do a bit of translating; the general
principles, though, will be kept as simple and universal as
possible. Although the program that will be developed and
listed is quite long, it will be given in segments that can
“run” independently of one another in a relatively small
memory.

If you'd like to do a bit of advance studying, try to become
familiar with your system’s means of writing both sequential
and random access files, limitations on record length and file
length if any, and especially the means of addressing or
accessing individual records within a given data file. Find
out, too, if your system requires data to be written to the
disk in any particular format, i.e: as text, as variables, or
whatever. If you use some of the Microsoft BASICs you
might also have to learn that rather cumbersome technique
known as “fielding” string variables. If you are completely
new to disk files you might also want to learn what limits
there are, if any, on the number of files open at any one time
and how disk files are created, named, opened and closed.

When you are that far along, we'll begin buiiding files—in
theory at first —and relating them to the database that we'll
construct as the series progresses. As we go along, we'll
try to construct a simple but useful data base program and
suggest ways that additional features might be added to it.
In the next issue we'll take up some of the necessary details
of organizing and manipulating data files.]

MicroMotion

MasterFORTH

It's here — the next generation
of MicroMotion Forth.

o Meets all provisions, extensions and experimental
proposals of the KORTH-83 Intemational Standard

e Uses the host operating system fiie structure (APPLE
DOS 33 & CP/M 2x)

e Built-in micro-assembler with numeric local iabels

e Afull screen editor is provided which includes 16 x
64 tormat, can push & pop more than one line.
user definable controls. upper/lower case key-
board entry, ACOPY utility moves screens within &
between lines, line stack, redefinable contros
keys. and search & replace commands

e Inciudes all file primitives described in Kerniganr
and Plauger's Software Tools

o The input and output streams are fully redtirectable

e The editor, assembler and screen copy utilities are
provided as reiocatable object modules. They
are brought into the dictionary on demand and
may be released with a single command

e Many key nucleus commands are vectored. Eror
handling. number parsing. keyboard transigtion
and so on con be redefined as needed by user
programs. They are automatically returned to
their previous definitions when the program is
forgotten.

e The string-handling package is the finest and
most compilete avaiiable.

e A listing of the nucleus is provided as part of the
documentation ‘

o The language implementation exactly matches
the one described in FORTH TOOLS, by Anderson
& Tracy. This 200 page tutorial and reference
manual is included with MasteFORTH

Foating Point & HIRES options available.
Available for APPLE i/ lI+/lle & CP/M 2.x users
MasterFORTH - $100.00 FP & HIRES -$40.00 each
Publications

e FORTH TOOLS - $20.00

e 83 Intemational Standard - $1500
e FORTH-83 Source Listng 6502, 8080, 8086 -

$20.00 each.
L Contact:

MicroMotion
12077 Wilshire Bivd .. Ste 506
Los Angeles. CA 90025

(213) 821-4340

20 Tre Computer Jouma

UNDERSTANDING SYSTEM DESIGN

by Bill Kibler

To begin working with computers one must first
understand how they are built. This understanding must
cover not only the individual components but also the whole
system concept. The most common stumbling block for new
users is understanding how all the pieces fit together. The
interrelationship of components is not as large a problem as
the word might indicate. The basic computer has not
changed much over the years from the three basic parts:
CPU, memory, and /0.

CPU

The CPU, or Central Processing Unit, is the main part of
any system. This unit is currently a single VLSI (Very
Large Scale Integrated Circuit). The CPU which first
achieved wide use at a reasonable price was the Intel 8080.
Several other devices were made before the 8080 but their
designs had many limiting features. The Motorola 6502,
which is used in the Apple® , has very limiting design
constraints but is still being used. Prior to the VLSI, CPUs
with separate logic circuits were used; they are still used in
some very large systems.

There are many books which cover the history and design
of CPUs in greater detail than I will do in this article. What
8 system integrator is most concerned about is the support
and availablity of the types of hardware he may encounter.
The most common types of used systems will be 8080 or
280, some 6502s, and in most new systems, the 8086/8088.
Some 6809, 68000, Z8000, and 16000 types may be in the
works for those people who deal with the leading edge of
techknowledge. Whichever CPU is used, support will be the
primary stumbling block. No matter how the system is
designed, some form of assembly language programming
will be necessary. This programming means that that you
will need to understand the internal architeture of the
device and its support logic.

Internally, all the CPUs are similar; they will have a
number of registers for storing temporary data. These
registers will most likely have other functions, such as
indirect addressing. These registers are used for doing the
work of the system, much as you might write temporary
figures on a piece of paper when balancing your checkbook.
All CPUs have ALUs, or Arithmetic Logic Units, which do
the addition, subtraction, division, sometimes multiplication,
and most logic evaluations (NORs, ORs, ANDs, test for zero,
positive, negative). These ALU activities are sometimes
limited only to the accumulator or “A” register and may be 8
or 16 bits wide. The 8080/Z80 has an 8 bit accumulator
whereas the 8086/8088 has a 16 bit accumulator — otherwise
the devices are quite similar. Another point of

understanding is the way the devices move data to and from
memory. The 8080, Z80, and 8088 work in 8 bit data
structures, while the 8086 has a 16 bit wide data path. The
68000 series of devices come in several versions for different
data paths, as do most of the newer CPUs.

For each device the internal and external methods of
handling data must be understood to write assemblv code.
This information is usually obtained from the
manufacturer's data sheets and programmer's guides.
Trying to do assembly programming without these books is
nearly impossible, and for critical timing they are absolute
necessities. Not only will the books explain the code, but
they will also tell how long it takes to do a given operation.
When dealing with disk units, for example, it is necessary to
know how long a certain type of data transfer will take to
see if that function will actually work or not.

Memory

The CPU’s ability to perform functions is made possible
by memory. Memories are devices that will store data, much
as post office boxes store letters. These devices consist of
two general types; static and dynamic. Static devices
maintain their memory without any assistance as long as the
power is on. Dynamic devices require refreshing of the data,
since they are capcitors and the charge disappears quickly.
These devices are the most common forms of RAM (Random
Access Memory). Another type is ROM (Read Only Memory!
which is the device that stores programs permanently.
Temporary permanent memory storage is done in EPROM
(Erasable and Programmable Read Only Memory) or
EEPROM (Electrically Erasable PROM).

All of these devices provide a place for programs and data
to be stored and utilized by the CPU. Memory units are
normally decribed as bytes or words of memory. Bytes are
usually understood to be 8 bits wide, whereas words are the
data size that the CPU works in (8, 16, 32, or larger). The
CPU will read or write data into and out of memory as
specified by the program. Some internal programs, such as
resets, will automatically start reading data from a fixed
location as they start looking for instructions. The memory
devices and the CPU have no way of knowing whether the
data is information or instruction. If instructed to go to the
wrong place, a CPU may load raw data but treat it as
instruction, locking up the system.

When dealing with system integration, the size and type
of memory must be fully understood. Memory constraints
will determine the speed at which the system operates, how
large the programs can be, and what types of operating
systems are possible. These building blocks. with the

addition of 1/0, make an actual computer.

1[4

The I/O is the input and output system. It talks to the
outside world, and allows the unit to perform meaningful
work. The most common form of /O is the serial interface.
This operation takes the normal parallel data stream and
converts it into a serial stream (single data bits following
each other). This information is supplied in a standard
format that allows computers from different manufacturers
to talk to each other. There are many different types and
styles of I/0, one for each use the computer can be put to.
For example, a common system might have a serial
terminal, a paralle] printer, and an analog data source for
collecting data.

This data is usually obtained through some VLSI device.
These devices are, in fact, special dedicated CPUs that will
perform a number of functions depending on the program
that was stored in them after reset. A typical device is the

Floppy Disk Controller or FDC. The CPU devices can be

programmed to write data in certain formats, check the data
string aginst a prerecorded value for lost or missing data
bits (CRC), change the data from paralle! to serial, move the
heads, and perform other hardware functions such as
turning the motor on or off. To do this, the programmer first
sets up the device by loading the internal registers through
software, and then makes sure the hardware handshaking is
coordinated with the main CPU’'s operations. This
handshaking can be critical, and some devices will not work
if data is not removed from the device in a certain amount of
time (critical timing loops).

Buses

Timing is also a critical consideration when dealing with
bus type systems. One of the most common (and
inexpensive) buses around is the S-100. This is the bus that
the 8080 got started on by Altair and later IMSAI. Although
the actual assignment of signals on the bus is not necessarily
the best layout, it has now become a standard. This
standard is called IEEE 696, and represents the group
number assigned by the IEEE organization, the task force
which put in cement all the needed specifications of the bus.
Meeting the IEEE specs is now necessary for any bus to be
called a true S-100 system.

The S-100 bus is composed of 100 foiled contacts located
on the end of an approximately 6 inch by 8 inch PC board.
There are 50 contacts on each side of the bottom edge of the
board, although the card can be mounted in any direction.
Air flow and cabling off the top edge usually determine the
position of the boards. One sign of a good board will be the
location of the heat sink. It should be found at the top left
hand corner of the board, providing for maximum heat
dissipation with the least heating of other components.
When located at the lower left hand corner, which is also
closest to the bus source pins, heat will flow upward onto
other devices, causing them to overheat, and possibly
resulting in system crashes.

Within the IEEE 696 Standard, there are several groups

of signals—they are data paths, control paths, power, and
system lines. System lines are typically reset, clock, and bus
status. Memory paths include the address and data lines.
The address can be up to 24 lines. The power standards are
8,16, and -16 volts DC. Regulation is usually done on the
board, but a few manufacturers have done it off the board
for better cooling and less noise. Control paths represent
the control signals of the CPU and are typically I/O,
memory, read, write, and hold. Data paths represent the 8 in
data lines and the 8 out data lines, although some systems
may use both for a true 16 bit data structure.

5-100 is not the only bus, but most of the other styles will
have some variation of the type of data and signal paths
found on the S-100. Failures which occur when new boards
are installed in a system are usually due to incompatible
timing signals caused by a differnce in CPUs or by pre
IEEE-696 standards. Some trial and error fudging may
correct these problems. Unfortunately, expensive digitial
analyzers are needed for true timing analysis. These special
scopes will provide pictures of many lines so that you can
compare the timings against one another. Generally, these
problems are in memory access and not I/O access. The I/0
timing is usually the least affected from system to system,
except for the disk operations, where multiple reads or
writes must occur within a given time frame. DMA (Direct
Memory Access} disk controller cards will pose many
problems for the system builder. These cards must stop the
CPU from reading or writing to memory while they control
the system and do the reading or writing. If they hold the
CPU in a wait state for too long, memory devices that use a
CPU refresh signal will lose their memory. The Z80 stops
refresh while in a wait state, and although most waits are
rather short and the refresh count normally has some room
for them, waits for long DMA operations may exceed the
maximum time.

The most common problem I have encountered is the
PDBIN signal. This 8080 style signal informs the devices
when the CPU is ready for the data. This signal is not on the
Z80 and must be created from the Z80 equivalents. When
doing this, some designers ignore the old needs of 8080
cards with respect to the PSYNC signal. This signal sets the
begining of a bus cycle and the falling edge should start
PDBIN. Lots of Z80 cards let the PDBIN stay high and not
go low during PSYNC, which is when some of the older
memory boards wiil do a refresh. The use of an inverter and
an AND device can gate PDBIN to PSYNC and solve the
problem.

Upgrading

When checking over the design of a new computer or
replacement board, upgrading is one important design
consideration. Upgrading refers to the ability to use newer
style chips as they become available—this is usually
reserved for the memory devices, where falling prices will
make it possible to expand memory with little physical
changes. These devices have been standardized by the
industry, and the upgrading process may involve as little
modification as changing one or two jumpers. Well

22 Tre Cormputer Jourma

111/ ,“;‘ H
///////////'/ // '1‘1”1"({
POWER THAT GOES AN YWHERE /

Single Board Computer

FAST — 6MHz Z80B* CPU

POWERFUL — 64K to 256K RAM. 2K 10 64K ROM
Sk" and 8" Floppy Controiler SASI
— 2 RS-232. Centronics Port

FLEXIBLE — 50-pin IO Expansion Bus
SMALL — 5%"x 10"

Trawte ly-:

DAVIDGE CORPORATION
292 East Highway 246
PO Box 1869

Bueliton CA 93427 (805) 688-9598

280 1s & registeres tragemars of Ziiog

Circuit Analysis, continued from page 16

names I have used. Secondly, it would be more
convenient to be able to use whole numbers (such as
10) in addition to the floating point and secientific
notation provided. My third suggestion is also a
minor matter of convenience —the program returns
you to the system each time an improper file name
is used, forcing you to reload the program. It would
save time and frustration if the program returned
you to the menu instead, with an error message
stating tha' the file name was not found.

These criticisms are very minor, and ACNAP and
the companion programs PLOTPRO and SPP are
very useful and reasonably priced. ACNAP is
currently available for CP/M, MSDOS, PCDOS, and
TRSDOS for $69.95 from BV Engineering, Box
3429, Riverside, CA 92519 a

documented systems with this kind of ability are a delight
for system integrators who enjoy being on top of the current
trends.

Memory is not the only place to look for changes; one
CPU will soon be upgradable. National Semiconductor has
made a CMOS CPU, the NSC800, for some time now. This
device interfaces to the systems as if it were a 8085. The
signal timing is based on the Intel device, which also has an
built in clock circuit. The internal architecture however, is

" that of the 280, complete with the expanded block instructions.

For people like myself who run a Zenith Z100 with an 8085
CPU, this means that their soon-to-bereleased plug
compatible version (the older unit had a different pinout! will
allow Z80 operation without any physical changes.

System Design Reviewed

When looking at a system, either an existing one or one
you want to build, all of the above topics must be
understood. In the case of a S-100 system, we will have a
CPU card, a memory card, an I/O card, and most likely a
Disk Controller. These components represent a complete
system. All of these items are available on one card, but
should a problem occur, trouble shooting can be rather
difficult. My personal recommendation is a system with CPU
and I/O on one card (ideally with enough RAM and ROM to
run a monitor), a separate memory card with options to go
to 266K of memory, and a disk controller card for both 8°
and 5% " drives. For faster system integration, a disk card
that has a serial port is ideal. The manufacturer can then
modify the BIOS for the known serial device, allowing you
to bring the system up without having to modify the
software first.

This design ideal has many reasons behind it. Substituting
cards to determine a bad unit is now possible. Using the
monitor to check memory or disk operation can get you
started in the right direction quickly. Heat problems are
reduced, as you have three sets of regulators on three
separate cards (instead of one big one cooking the
components mounted next to it). Spacing and repair work is
easier because two-layer boards are used instead of multi-
layer ones. There may not be any PALs or special] devices
that are supplied only by the manufacturer, which means
that repair can be done by anyone. Lastly, the repair cost
can be lowered by using less expensive and easier to obtain
parts. I always consider the cost of repair or replacement in
my cost of a system. and some of the cheaper products are
repairable only by complete replacement at full cost value.
The system specifications also meet the availablity of used
items, as most products of older design meet the above
design parameters.

Review
What has been discussed in this article is the whole
system approach. What was not covered is how the software
relates to the system. This discussion was meant to review
some hardware design considerations which everybody
needs to understand before approaching system purchases
or modifications. n

he Bookshe

Soul of CP/M: Using and Modifying CP/M's Internal
Features

Teaches you how to modify BIOS. use CP M system calls in your own programs, and
more! Excellent for those who have read CPM Primer or who otherwise understand
CPM's outerlsver utilities. By Mitchell Waite. Approximately 160pages. 8x9's. comb.

1983, RPN F ... 81895
The Programmer's CP/M Handbook
An exhausioe coverage of CP M 26" © s internag struetare and major components s

presented. Writter for the programeser this vouume ncludes schraatine esxamoies for
each of the (P M system calis and informal:on or how to customize CP M - eompiete with
deta.led source codes for ail exampics A dozen uhility programs are shown with heas.ly
annotated Cianguage source codes Ananvaluadie and comprehensive tool for the serious

programmer By Andy Jonnson Laird, 730 pages. TP ox¥i o softbound .. $01.95

Interfacing to S-100 (IEEE 696) Microcomputers

This beok is a must if vou wanl to design & custom interface between an S 100
microcomputer and aimost any type of peripheral device. Mechanical and electrical design
18 rovered. aiong with wgica. and efectrical relationships. bus interconnections and more

By Sol Libes ang Murk Garete. 322 pages, 87 2x% 4. softhound B $16.45

Microprocessors for Measurement and Control

You'll learn to design mechanica' and process equipment using micraprocessor based
“reai Ume’ computer svstems. This book presents plans for prototy pe systems which
allow even those unfamiiar with machine or assembly lanvuage to initiate projects. Hy
DM Ausianaer and P Ragues. 310 pages. T 3 5x9 | 4. softbound. $18.95

Understanding Digital Logic Circuits

A working handhook for service technicians and others who need te know more ahout
digital electronics in radio. television. audio. or related areas of electronic troubleshooting
and repair Youre given an overview of the anatomy of digital logic diagrams and
introduced to the many commercial 1 packages on the market. By Robert G. Middleton.
392 pages. 3t :x%:, softhound . e A 31895

Real Time Programming: Neglected Topics

Th:s book presents an originai approach to the terms. skills, and standard hardware
devices needed to connect a computer to numerous peripheral devices. It distilis technical
knowiedge used by hobbyists and computer scientists alike to useable. comprehensihle
methods. It explains such computer and electronics concepts as simple and hierarchical
interrupts. ports. PIAs. timers. converters, the sampling theorem, digital filters, closed
loop control systems. multiplexing, buses. communication, and distributed computer
systems. By Caxton . Foster. 190 pages. 6'4 x9%. softbound.89.95

Interfacing Microcomputers to the Real World
Here s a complete guide for using a microcomputer to computerize the homo o5 o on
laboratory It shows how to desigi and buiid the interfaces necessars o con e ' a

microcomputer to reai worid devices Wath this book, microramputers can bw pre

Lo provide fast. accurate monitoring and controf of virtually al! electron: tun.

o from

controihng houselights thermostats. sensors. and switehes. to operaling motors

keybhoards. and dispiavs Thic book 1s based on hott the hardware and softwars pr

of the Zni micropracessor sfonag i several mosenmputers, Tands Corpeorat
TR~ =i and others' By Murray Sargent 1L and Richard Shoemakeri 2xx Frawes S XM
softbouna . . $1° 0%

Mastering CP/M

Now you can use UPM to do more than just copy fies For CPM asers or <ystems
programmers - this book takes up where our (P M handbook leaves off. It wii' ¢:ve vou
an indepth understanding of the CPM moduies such as. CCP (Console Command
Processort, BIOS 1Basic Input Output System'. and BDOS (Basic Insk Operating System:
Find out how to. incorporate additional peripherals with your svstem. use consare 1 O, yse
the file control block and much more This book inciudes a specal feature- a itbrarsy of
useful macros. A comprehensive set of appendices 1s included as a practical reference tin:!
Take advantage of the versaulity of your operating system' By Alan R. Miller. 39 pages
6°x9% . softhound .. o . $16 95

FORTH Tools, Volume One

FORTH Tools 1s a comprehensive introduction to the new internations;, FURTH %3
Standard and all its extensions. It gives careful treatment to the CREATF DOEN
construct, which is used to extend the language through new classes of inteiligent data
steuctures. FORTH Tools gives the reader an in-depth view of input and output. from
reading the input stream to writing a simple mailing list program. Each topic is presenter
with practical exampies and numerous illustrations. Problems (and solutions’ are prosided
at the end of each chapter. FORTH Tools 1s the required textbook for the UCLA ard I’
Berkeley extension courses on FORTH. By Anita Anderson and Martin Tracy. 21% pages
SlaxBla, softbound. L. e VRS

TTL Cookbook

Popular Sams author Dan Lancaster gives you a complete look at TTL logic circuits. the
most inexpensive, most widely applicable form of electronic logic. In nononsense
language. he spells out just what TTL is. how it works. and bow you can use it. Many
practical TTL applications are examined. including digital counters. electronic
stopwatches, digital voitmeters, and digital tachometers. By Don Lancaster. 336 pages,
ShxBr,moft. €18T4. e $12.95

The Computer Journal ay rite Price__Tow
PO Box 1697 Kalispell, MT 59903
Order Date
Print Name
Agaress
City State Zip
- - — Shipping charges are $1.00 for the first Book Tota!
—Check —Mastercarg —Visa book. and $.50 for all subsequent books
Cara No Expires Please allow 4 weeks for delivery Shipping
Signature for Charge TOTAL

24 Tre Computer Jourma

Searching for Useful Information?

The Computer Journal is for those who interface, build, and apply micros. No
other magazine gives you the fact filled, how-to, technical articles that you need to
use micros for real world applications. Here is a list of recent articles.

Volume 1, Number 1:

*The RS-232-C ﬁel interface, Part One

*Teleco ifg with the Apple]{: Transferring Binary Files
*Begin Column, Part One: Getting Started

«Build’an “Epram”

Volume 1, Number 2:

*File Transfer Programs for CP/M

*The RS-232-C Serial Interface, Part Two

*Build a Hardbgjp Print Spooler, Part One: Background and
Design , O

*A Regibi"of Floppy Disk Formats

OSendTng Morse Code With an Apple]

eBeginner's Column, Part Two: Basic Concepts and Formulas
in Electronics

Volume 1, Number 3:
*Add an 8087 Mair'Chip to Your Dual Processor Board
*Build an Ag Qx\tarter for the Apple]
*ASCILyVetence Chart

sModdrhs for Micros

*The CP/M Operating System

sBuild a Hardware Print Spooler, Part Two: Construction

Volume 1, Number 4:

eOptoelectronics, Part One: Detecting, Generating, and Using
Light in Electronics

eMulti-user: An Introduction

eMaking the CP/M User Function More Usefui

*Build a Hardware Print Spooler, Part Three: Enhancements
esBeginner's Column, Part Three: Power Supply Design

Volume 2, Number 1:

*Optoelectronics, Part Two: Practical Applications
eMulti-user: Muiti-Processor Systems

*True RMS Measurements

*Gemini-10X: Modifications to Allow both Serial and Parallel
Operation

Volume 2, Number 2:

*Buiid a High Resolution S-100 Graphics Board, Part One:
Video Displays

*System Integravipn, Part One: Selecting System
Components., O
*Opto \hcs, Part Three: Fiber Optics
*Controfling DC Motors

sMulti-User: Local Area Networks

*DC Motor Applications

Volume 2, Number 3:
eHeuristic Search in Hi-Q

*Bulid a High-Resolution $-100 Graphics Board, Part Two:
Theory of Operation

sMulti-user: Etherseries

eSystem Integration, Part Two: Disk Controtlers and CP/M 2.2
System Generation

Volume 2, Number 4:

*Build a VIC-20 EPROM Programmer

eMuiti-user: CP/Net

*Build a High-Resolution S-100 Graphics Board, Part Three:
Construction

*System Integration, Part Three: CP/M 3.0

sLinear Optimization with Micros

*LSTTL Reference Chart

Volume 2, Number 5:

sThreaded Interpretive Language, Part One: Introduction and
Elementary Routines

sinterfacing Tips and Troubles: DC to DC Converters
eMuiti-user: C-NET

*Reading PCDOS Diskettes with the Morrow Micro Decision
*LSTTL Reference Chart

*DOS Wars

*Build a Code Photoreader

Volume 2, Number 6:

*The FORTH Language; A Learner's Perspective

*Build an Affordable Graphics Tablet for the Apple]
*Multi-user: Some Generic Components and Techniques
*Make a Simpie TTL Logic Tester

sIntertacing Tips and Troubles: Noise Problems

sWrite Your Own Threaded Language, Part Two: Input-Output
Routines and Dictionary Management

*TTL Reference Chart

Volume 2, Number 7:

sPutting the CP/M IOBYTE To Work

eWrite Your Own Threaded Language, Part Three: Secondary
words

einterfacing Tips and Troubles: Noise Problems, Part Two
*Build a 68008 CPU Board for the S-100 Bus

*Writing and Cvaluating Documentation

eElectronic Dial Indicator: A Reader Design Project

Volume 2, Number 8:

eTricks of the Trade: Installing New 1/O Drivers in a BIOS
sinterfacing Tips and Troubles: Noise Problems, Part Three
eBeginner's Project: 555 Timer Breadboard

oSTTL Reference Chart

Multi-user: Cables and Topology

eWrite Your Own Threaded Language, Part Four: Conclusion

Back issues: $3.25 in the U.S. and Canada, $5.50 in other countries (air mail postage
included.) Send pggment with your complete name and address to The Computer

Journal, PO Box 1

7, Kalispell, MT 59903. Allow 3 to 4 weeks for delivery.

